Environment and Sustainability Features and Impacts

Over the last two years, researchers at the UMN have been working with several Minnesota agencies to facilitate surveillance and enhance our understanding of the risk for CWD spreading — a key concern for Minnesota legislators. In Minnesota, these partners include the Minnesota Department of Natural Resources (DNR), Minnesota Board of Animal Health (BAH), Minnesota Department of Agriculture, Minnesota Pollution Control Agency, several tribal natural resources agencies around the state and Extension specialists.

One of the key challenges of detecting oak wilt is how similar the symptomatic bronze or brown wilting leaves can look to signs of drought stress and other diseases. Finding infected trees in a large plot of forest land can be like searching for a needle in a haystack, especially when wilting is in its more subtle early stages. Using handheld devices, drones and airborne hyperspectral sensors, UMN researchers have been capturing the photons — packets of energy — reflecting off forest canopies.

Previously, UMN researchers developed an anaerobic digester that handled another kind of waste — pig manure — but Twin Cities-based food bank Second Harvest Heartland was interested in seeing if such a system could help with the 1,500 tons of food waste, they discard to the tune of $200,000 annually.

Researchers at the Southwest Research and Outreach Center in Lamberton, Minn., wanted to understand the individual and cumulative impacts of multiple, integrated best practices on water quantity and water quality in order to meet nutrient load reduction goals. In particular, researchers were interested in evaluating the response of in-field, edge-of-field and beyond-the-field/in-stream management practices on water quantity and water quality for a small watershed and upscale these results to watershed scale.

With the ultimate goal of developing more sustainable food production systems, UMN researchers explored plant-soil-microbe relationships driving soil fertility in organic systems. To do this, they developed a farmer-driven project to investigate the role summer cover crops can play in enhancement of soil nutrients and overall health when grown for short periods of time. Significantly, they partnered with a variety of immigrant farmer grower groups for on-farm studies and shared their soil health information directly with producers.

Since 2016, the Minnesota Invasive Plants and Pests Center has helped fund a team of research and Extension soybean specialists to explore two ways to help Minnesota soybean farmers deal with soybean pests--especially soybean aphids. The first is focused on developing aphid-resistance soybeans and the second is exploring the use of drone technology to help with pest scouting. 

Colony collapse disorder (CDD) is a threat to the survival of honey bees and could significantly disrupt agricultural production.  However, research into CCD is limited by the lack of in vitro cultures composed of honey bee cells. To address this limitation, UMN researchers at the Bee Lab and the Department of Entomology set out to develop a honey bee cell line that would support continuous culturing of the insect cells in order to develop a powerful tool to explore the process of infection and the negative impact pathogens may have on honey bee biology and health.

Early meetings between stakeholders and the team at the University’s Minnesota Aquatic Invasive Species Research Center (MAISRC) identified a large number of needs as the state works to control AIS. One of these needs seemed to tie all of the issues together: Minnesota needs a decision tool that would help managers on the ground determine the best ways to control AIS with limited people and funds. In short, they needed to not only know where AIS are but also where they are most likely to go next.

Hundreds of Minnesota lakes are infested with zebra mussels or spiny water flea, two aquatic invasive species (AIS) that have a significant impact on lake ecosystems. Researchers know both species reduce a lake’s zooplankton — an important food source for young walleye — but there is limited research on how that translates up the food chain to larger species, including Minnesota's favorite, walleye.

Since 1975, David Hansen has documented thousands of research projects and their footprint on everyday life for the University of Minnesota. Now retired, his photo collection has been added to UMedia fulfilling a long-term goal to have his photos freely accessible to the University and public to enjoy for decades to come.

Pages